49 research outputs found

    Vacuolar myopathy in a dog resembling human sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (sIBM) is the most common myopathy in people over the age of 50 years. While immune-mediated inflammatory myopathies are well documented in dogs, sIBM has not been described. An 11-year-old dog with chronic and progressive neuromuscular dysfunction was evaluated for evidence of sIBM using current pathologic, immunohistochemical and electron microscopic diagnostic criteria. Vacuoles and congophilic intracellular inclusions were identified in cryostat sections of multiple muscle biopsies and immunostained with antibodies against amyloid-β peptide, amyloid-β precursor protein, and proteosome 20S of the ubiquitin–proteosome system. Cellular infiltration and increased expression of MHC Class I antigen were observed. Cytoplasmic filamentous inclusions, membranous structures, and myeloid bodies were identified ultrastructurally. These observations constitute the first evidence that both the inflammatory and degenerative features of human sIBM can occur in a non-human species

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    The effect of painful laser stimuli on EEG gamma-band activity in migraine patients and healthy controls

    No full text
    Objective: Gamma-band oscillations (GBOs) induced by nociceptive stimuli were compared between migraine patients and controls in order to further characterize interictal pain processing in the brain of migraineurs. GBOs were related to subjective pain intensity, years of migraine history and migraine attack frequency and the sources of GBOs were investigated. Methods: Twenty-three migraine patients without aura and 23 controls received a series of laser stimulations on their right forehead and right hand while recording electroencephalographic data (61 electrodes). After each series they indicated the perceived pain. A multitaper time-frequency method was used on artifact-cleaned scalp data and frequency domain beamforming was used to localize the GBOs. Results: In both groups we observed increases in GBOs around central electrodes, which were not significantly different between groups. The central GBOs were positively associated with the subjective pain ratings in the control group, in accordance with previous studies, but not in the migraine group. Increases in gamma power were observed in the midcingulate cortex. Conclusions: No evidence was found that GBOs differ between interictal migraine and controls nor that central GBOs represent a neurophysiological correlate of subjective pain in migraine. Significance: We shed light on observations of GBOs during pain processing in interictal migraine

    Dynamic causal modelling of the reduced habituation to painful stimuli in migraine: An EEG study

    No full text
    A consistent finding in migraine is reduced cortical habituation to repetitive sensory stimuli. This study investigated brain dynamics underlying the atypical habituation to painful stimuli in interictal migraine. We investigated modulations in effective connectivity between the sources of laser evoked potentials (LEPs) from a first to final block of trigeminal LEPs using dynamic causal modelling (DCM) in a group of 23 migraine patients and 20 controls. Additionally, we looked whether the strength of dynamical connections in the migrainous brain is initially different. The examined network consisted of the secondary somatosensory areas (lS2, rS2), insulae (lIns, rIns), anterior cingulate cortex (ACC), contralateral primary somatosensory cortex (lS1), and a hidden source assumed to represent the thalamus. Results suggest that migraine patients show initially heightened communication between lS1 and the thalamus, in both directions. After repetitive stimulations, connection strengths from the thalamus to all somatosensory areas habituated in controls whereas this was not apparent in migraine. Together with further abnormalities in initial connectivity strengths and modulations between the thalamus and the insulae, these results are in line with altered thalamo-cortical network dynamics in migraine. Group differences in connectivity from and to the insulae including interhemispheric connections, suggests an important role of the insulae

    Bidirectional cingulate-dependent danger information transfer across rats

    Get PDF
    Social transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer "catches" the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator's distress also influences how the demonstrator responds to the danger. This was true to a similar extent across highly familiar and entirely unfamiliar rats but is stronger in animals preexposed to shocks. Injecting muscimol in the anterior cingulate of observers reduced freezing in the observers and in the demonstrators receiving the shocks. Using simulations, we support the notion that the coupling of freezing across rats could be selected for to more efficiently detect dangers in a group, in a way similar to cross-species eavesdropping

    Relationship between muscle impairments, postural stability, and gait parameters assessed with lower-trunk accelerometry in myotonic dystrophy type 1

    No full text
    This study evaluated gait using lower-trunk accelerometry and investigated relationships between gait abnormalities, postural instability, handgrip myotonia, and weakness in lower-limb and axial muscle groups commonly affected in myotonic dystrophy type 1 (DM1). Twenty-two patients (11 men, 11 women; age = 42 years (range: 26–51)) with DM1 and twenty healthy controls (9 men, 11 women; age = 44 years (range: 24–50)) participated in this study. Gait analysis using lower-trunk accelerometry was performed at self-selected walking pace. Postural stability was measured via center of pressure displacement analysis using a force platform during eyes-closed normal stance. Handgrip myotonia was quantified using force-relaxation curve modeling. Patients displayed lower walking speed, stride frequency, stride length, gait regularity, and gait symmetry. Strength of ankle plantar flexors, ankle dorsal flexors and neck flexors correlated with interstride regularity in the vertical direction (ρ = 0.57, ρ = 0.59, and ρ = 0.44, respectively; all P < 0.05). Knee extension strength correlated with gait symmetry in the anteroposterior direction (ρ = 0.45, P < 0.05). Center of pressure velocity was greater in patients and correlated with neck flexion and ankle plantar flexion weakness (ρ = −0.51 and ρ = −0.62, respectively; both P < 0.05), and with interstride regularity in the vertical direction (ρ = −0.58, P < 0.05). No correlation was found between handgrip myotonia and any other variable studied. Lower-trunk accelerometry allows the characterization of gait pattern abnormalities in patients with DM1. Further studies are required to determine the relevance of systematic gait analysis using lower-trunk accelerometry for patient follow-up and intervention planning
    corecore